高光谱技术的水上苯乙烯厚度反演模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2020.03.016

高光谱技术的水上苯乙烯厚度反演模型研究

引用
针对水上发生化学品泄露时传统监测手段不能及时准确地获取泄露污染物的厚度问题,提出了以高光谱数据为基础数据,提取出与污染物厚度相关性较好的特征变量作为预测变量,结合python中的机器学习,通过4种预测模型进行污染物厚度反演.本文以水上泄露常见的化学品苯乙烯为例,测定不同厚度的水上苯乙烯及其对应的高光谱数据集,通过相关系数以及p值极值提取法,筛选出的11个特征变量,分别建立了多元线性回归(MLR)、偏最小二乘(PLSR)、支持向量机(SVM)和随机森林(RF)4种苯乙烯厚度反演模型.结果 显示,4种反演模型都可以达到相对较好的反演效果,其中随机森林模型反演效果相对较好,其相关系数(R2)为0.938 6,均方根误差(RMSE)为20.94,完全可以用于水上苯乙烯厚度反演.

苯乙烯、机器学习、随机森林、厚度反演

45

P237(摄影测量学与测绘遥感)

国家自然科学基金项目;国家重点研发计划课题项目;重庆市社会事业与民生保障科技创新专项重点研发项目

2020-05-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

103-109

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

45

2020,45(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn