面向多维时空位置数据的动态加权聚类模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2019.11.006

面向多维时空位置数据的动态加权聚类模型

引用
针对传统聚类算法在处理时空位置数据挖掘时面临的多维聚类问题,提出了动态加权聚类模型.该模型叠加利用经典k-均值和基于密度的DBSCAN聚类算法,通过计算最大轮廓系数确定合适的簇数目,按照划分初始簇类、识别和剔除噪声点、修正聚类簇中心点位置坐标3个步骤实现对大体量多维时空位置数据的聚类分析,提出了动态权重系数计算公式,优化了基于密度的DBSCAN聚类算法中相似度函数,并在Python3.7环境下以网络签到数据集实例仿真验算了该模型算法.实验结果表明,相较单一的传统聚类算法,该模型能综合利用多维非位置属性对时空位置数据点聚类,更合理界定聚类簇的归属数据点,对提升时空位置数据集聚类簇中数据点的聚类效果明显.

时空数据、数据挖掘、均值聚类、密度聚类

44

TP391(计算技术、计算机技术)

国家自然科学基金项目41576105,41604010;江西省教育科学“十三五”规划2018年度课题18YB099

2019-12-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

35-42

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

44

2019,44(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn