一种运动目标轨迹提取方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2019.07.018

一种运动目标轨迹提取方法

引用
针对基于区域的轨迹提取类算法的时间复杂度高等问题,该文提出了一种基于Faster R CNN的目标轨迹提取方法,利用Faster R-CNN能够快速定位和特征提取的原理,快速确定目标区域,在此基础上提出距离加阈值限制的方法进行目标关联.该方法不要求Faster R CNN模型具有较高目标框回归精度,且充分利用卷积神经网络能够高效提取图像特征的特点,在保证轨迹提取精度的同时,降低了目标区域确定的时间和数据量,且通过均匀抽取和目标参考点关联的方法,进一步降低了目标关联的时间.与基于Camshift的区域提取法对比,在时间复杂度基本一致的情况下,大大提高了复杂背景和复杂纹理条件下目标区域确定的准确率,使得轨迹提取率更高.

区域卷积神经网络、Faster R-CNN算法、运动目标轨迹、Camshift算法

44

P237(摄影测量学与测绘遥感)

国家重点研发计划项目2016YFC083100

2019-08-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

116-121

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

44

2019,44(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn