卷积神经网络的PM2.5预报模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2018.08.011

卷积神经网络的PM2.5预报模型

引用
针对目前基于机器学习的PM2.5预报模型无法充分利用研究区域内其他相关站点的数据问题,该文提出了一种区域时空点数据的表示方法,并在此基础上提出了基于卷积神经网络的PM2.5预报模型.该模型利用了区域内多站点的历史PM2.5实测数据以及相应的气象预报数据,对区域内任一站点PM2.5浓度进行预报.实验结果显示,该模型在京津冀区域内能对未来至少3d内的PM2.5浓度进行较高精度的预报.与基于单站点的前馈神经网络预报结果对比表明,对区域整体污染及气象状况建模的卷积神经网络模型预报精度更高.该模型对区域内所有站点的预测结果与地面实测值的分布基本一致,表明了该模型具有对区域内PM2.5浓度进行时空预报的能力.

空气质量预报、细颗粒物PM2.5、卷积神经网络

43

TP18;X8(自动化基础理论)

2018-09-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

68-75

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

43

2018,43(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn