门限重复单元的PM2.5浓度预报方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2018.07.013

门限重复单元的PM2.5浓度预报方法

引用
针对当前我国重污染天气实时的空气质量预报问题,该文提出了一种基于长短期记忆神经网络的PM2.5浓度实时预报方法.此方法结合了北京市地面空气质量监测数据、天气预报模式的气象预报数据及东亚地区污染物排放清单进行分析,在将高层大气状态及排放状况融入了预报模型的同时,利用LSTM模型模拟区域PM2.5浓度的时序连续变化特征,建立了0~72 h的区域PM2.5浓度实时预报模型.实验证明,该方法可以有效表征大气污染物变化的时序特征,从而进行更为精准的长时PM2.5浓度预报.同时,使用门限重复单元作为LSTM神经网络的核心,在保障模型精度的同时,进一步减少了模型训练时间,提高了模型的计算效率.

PM2.5实时预报、门限重复单元、WRF、深度学习

43

2018-09-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

79-86

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

43

2018,43(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn