自适应蚁群和模糊聚类的SAR图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16251/j.cnki.1009-2307.2016.08.025

自适应蚁群和模糊聚类的SAR图像分割

引用
针对传统蚁群算法及模糊C-均值聚类算法在合成孔径雷达遥感图像分割中精度低下和收敛速度较慢的问题,该文提出了一种改进的自适应阈值的蚁群及模糊C-均值聚类算法,实现对复杂合成孔径雷达图像进行分割.针对不同的合成孔径雷达图像,首先利用最大类间方差法获取最优阈值,通过最优阈值干预避免蚁群算法陷入局部最优解;再将自适应阈值蚁群算法得到的聚类中心和聚类类别数输入模糊C-均值聚类算法中,最终实现图像分割.实验结果证明,该算法在时间和误分率上较传统方法有显著的改进.

SAR图像分割、蚁群算法、模糊C-均值聚类、自适应

41

TN957.52

河南省教育厅科学技术研究重点项目14B520039;校青年科研基金项目PXY-QNJJ-2014004

2016-09-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

121-124,120

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

41

2016,41(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn