PSO-SVM及其在减速机齿轮诊断中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13873/J.1000-9787(2018)04-0155-03

PSO-SVM及其在减速机齿轮诊断中的应用

引用
针对支持向量机(SVM)参数一般是人为选取,无法准确取到最佳值的问题,提出了一种基于粒子群算法(PSO)对参数进行优化的支持向量机(PSO-SVM).以减速机齿轮的3类故障类型(正常、磕碰、磨损)数据作为研究资料,组成训练样本集,训练PSO-SVM分类模型,从训练集中抽取部分数据组成测试样本集,对模型进行检验测试.研究表明:PSO-SVM模型分类正确率达到了93.8%,相较未进行参数优化的SVM,算法能更好地找到全局最优解,提高了模型的分类正确率.

粒子群优化算法、支持向量机、齿轮诊断

37

TU311.3;TU352.1(建筑结构)

国家自然科学基金资助项目51375467;质检公益性行业科研专项项目201410009

2018-05-14(万方平台首次上网日期,不代表论文的发表时间)

共4页

155-157,160

相关文献
评论
暂无封面信息
查看本期封面目录

传感器与微系统

1000-9787

23-1537/TN

37

2018,37(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn