基于改进粒子群算法的最优特征子集研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-9787.2010.09.021

基于改进粒子群算法的最优特征子集研究

引用
特征选择是模式识别系统的难点.针对高维数据对象,先运用改进粒子群优化(PSO)算法快速、有效地从特征样本中提取一组最优特征子集,然后采用最小二乘支持向量机(LSSVM)分类器对最优特征子集进行分类,验证特征选择的好坏.经大量实验验证,在保证分类正确率的前提下,该方法有效提高了特征选择效率.

特征选择、粒子群优化算法、最小乘支持向量机

29

TP391.41(计算技术、计算机技术)

2011-05-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

64-66

相关文献
评论
暂无封面信息
查看本期封面目录

传感器与微系统

1000-9787

23-1537/TN

29

2010,29(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn