多分类支持向量机在滑坡稳定性判识中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-5888.2010.03.021

多分类支持向量机在滑坡稳定性判识中的应用

引用
如何准确地判识和评价滑坡的稳定性一直是滑坡研究中的关键问题.基于多分类支持向量机的基本理论,利用三峡库区的37个典型滑坡(27个训练样本,10个测试样本),建立了滑坡稳定性判识的多分类支持向量机模型,并与距离判别分析方法进行了比较.结果表明,SVM模型对测试样本和训练样本的判识准确率均达到100%,而距离判别法对测试样本和训练样本的判识准确率分别为80%和77.8%,前者的判识精度明显优于后者.在此基础上,将SVM模型运用于溪洛渡库区牛滚凼滑坡的稳定性判识中,结果与实际情况吻合较好.

多分类支持向量机、滑坡、稳定性判识、判识指标

40

P642.2(水文地质学与工程地质学)

国家自然科学基金;国家重点实验室开放基金;西部之光"人才培养计划

2010-07-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

631-637

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(地球科学版)

1671-5888

22-1343/P

40

2010,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn