改进的LeNet-5网络在图像分类中的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9870.2022.05.012

改进的LeNet-5网络在图像分类中的研究

引用
LeNet-5卷积神经网络(LeNet-5 Convolutional Neural Network)虽然在手写数字识别中取得了不错的成绩,但是对具有复杂纹理特征的图像进行分类时准确率不高.针对LeNet-5网络对低层次特征利用率较低的问题,引入跨连结构,将第1个池化层和第2个池化层向后传播的同时与第2个全连接层相连,充分地利用网络提取的低层次特征.针对LeNet-5网络泛化能力低的问题,采用重叠池化并在后面加上局部响应归一化操作,提高网络的泛化能力.在Fer2013、Cifar-10和Fashion-MNIST数据集上进行的实验结果表明,与LeNet-5卷积神经网络相比,改进的LeNet-5卷积神经网络在复杂纹理特征数据集上表现出了更好的分类能力.

卷积神经网络、图像分类、局部响应归一化、过拟合

45

TP391.4(计算技术、计算机技术)

吉林省科技发展计划项目20160101279JC

2022-12-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

74-79

相关文献
评论
暂无封面信息
查看本期封面目录

长春理工大学学报(自然科学版)

1672-9870

22-1364/TH

45

2022,45(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn