基于混合分布时间序列的K-GRU建模
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9870.2022.01.018

基于混合分布时间序列的K-GRU建模

引用
混合分布的时间序列数据具有非平稳性、周期性等复杂的特性,且蕴含着未来的变化趋势,其复杂性对该类数据的预测精度造成了很大的影响.为了有效降低该类数据的预测误差,提出了一种K-均值与GRU神经网络相结合的混合模型——K-GRU混合模型,具有较高的预测精度.仿真实验表明,样本量为5000左右,K分别取2、3、4、5时,该模型均比GRU神经网络的预测效果好.模拟结果也与多项式模型、傅里叶序列和LSTM进行了比较,结果表明K-GRU混合模型的预测效果最好.最后将K-GRU混合模型应用于街边停车占用率数据中,进一步验证了该方法的有效性.

混合分布时间序列;K-GRU;GRU神经网络;聚类算法

45

O213(概率论与数理统计)

国家自然科学基金;国家自然科学基金

2022-03-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

122-128

相关文献
评论
暂无封面信息
查看本期封面目录

长春理工大学学报(自然科学版)

1672-9870

22-1364/TH

45

2022,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn