基于卡方方法及对称不确定性的网络流量特征选择方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9870.2019.02.018

基于卡方方法及对称不确定性的网络流量特征选择方法

引用
对网络流量数据进行分类时,由于网络流量具有多个类别,并且各类样本数量不均衡,故在利用机器学习进行分类时,会导致分类的模型的性能降低,致使样本被误分为样本数量多的类别,进而致使样本数量较少的类别(小类别)的召回率过低.针对该问题,提出一种基于卡方方法及对称不确定性网络流量特征选择方法.该方法首先计算特征与类之间的加权卡方值,选择卡方值较大的特征组成候选特征子集,然后根据特征与所有类之间的对称不确定性进一步筛选特征集.在Moore网络流量数据集上进行实验,得到的实验结果证明,通过该方法选择的特征对网络流量数据进行分类,在保证准确率高的前提下也得到了较高的小类召回率,减轻了数据不均衡问题带来的不良影响.

数据不均衡、网络流量、相对不确定性、召回率

42

TP393(计算技术、计算机技术)

国家自然科学基金资助项目51378076

2019-11-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

74-78

相关文献
评论
暂无封面信息
查看本期封面目录

长春理工大学学报(自然科学版)

1672-9870

22-1364/TH

42

2019,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn