K-均值聚类算法的MapReduce模型实现
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9870.2015.03.029

K-均值聚类算法的MapReduce模型实现

引用
针对日益严峻的大数据处理时间长、执行速率低等问题,通过深入分析,提出了一种提高大规模数据聚类效率的方法。以K-均值聚类算法为原型,利用MapReduce模型在大规模数据处理方面的优势,对原有算法进行并行化改进,设计出一种基于Hadoop分布式云平台的K-均值聚类MapReduce模型。应用此模型,对淘宝用户仿真数据进行聚类试验,试验结果表明,对K-均值聚类算法的MapReduce模型实现后,性能优于原算法性能,缩短了聚类时间,提高了聚类效率,特别适于对海量数据进行聚类处理。

大数据、MapReduce模型、K-均值聚类算法

TP391(计算技术、计算机技术)

2015-07-31(万方平台首次上网日期,不代表论文的发表时间)

共5页

120-124

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn