满足差分隐私的逻辑回归矩阵分解推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2022-047

满足差分隐私的逻辑回归矩阵分解推荐算法

引用
为了提高隐私保护下的推荐算法准确性,提出了一种满足差分隐私保护的逻辑回归矩阵分解推荐算法.该算法首先将隐式数据的矩阵分解转换为分类问题并以概率方式对其建模;然后采用sigmoid函数对预测评分进行非线性变换,将原始的矩阵分解问题转换成用户隐因子和项目隐因子的优化问题,并对目标函数添加随机噪音进行扰动,使算法满足差分隐私保护.在Movielens100K,Movielens1M和YahooMusic数据集上进行实验,并与现有算法进行对比,该算法在F1 值指标上分别提升了9.29%,7.40%和3.61%.理论分析和实验结果表明,所提算法在实现用户隐式反馈数据保护的同时还能有效地保证推荐结果的准确性,具有良好的应用价值.

隐式反馈、矩阵分解、差分隐私保护、推荐系统

46

TP309.2(计算技术、计算机技术)

重庆市自然科学基金cstc2021jcyj-msxmX0557

2023-07-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

115-120

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

46

2023,46(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn