基于元蒸馏的个性化联邦学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2021-327

基于元蒸馏的个性化联邦学习算法

引用
联邦学习(FL)中客户端数据异构导致训练的统一模型无法满足每个客户端对性能的需求.针对这一问题,提出了一种个性化联邦学习算法——元蒸馏联邦学习,将知识蒸馏和元学习与FL结合,并将个性化过程嵌入FL.在每次全局迭代中,每个客户端的本地模型(即学生模型)在蒸馏全局模型(即教师模型)的同时将自身情况反馈给教师模型并使其不断更新,从而获得一个更优的教师模型以进行个性化学习.仿真结果表明,与现有个性化算法相比,所提算法在提高个性化精度的同时能在全局精度和个性化精度之间取得较好的折中.

联邦学习、元学习、知识蒸馏、个性化

46

TP181(自动化基础理论)

北京市自然科学基金L202016

2023-03-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

12-18

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

46

2023,46(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn