基于BC聚类的差分隐私保护推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2020-174

基于BC聚类的差分隐私保护推荐算法

引用
为提高差分隐私保护下推荐算法的准确性,提出了一种考虑差分隐私保护的基于Bhattacharyya系数(BC)的聚类推荐算法.以BC作为项目相似性度量的标准,根据BC相似性对项目进行K-medoids聚类,并在聚类簇中进行私有项目邻居选择.最后,根据最近邻居集信息,对用户的评分进行预测和Top-n推荐.提出的方案有效地克服了已有方法中存在的相似性度量依赖于共同评分的问题,提高了相似性度量的准确性,有效避免了因隐私保护而造成的最近邻居集质量下降的问题.理论分析和实验测试的结果表明,该方法在实现隐私保护的同时还能有效保证推荐的高质量,较好地实现了隐私保护和数据效用之间的平衡,具有良好的应用潜力.

协同过滤、Bhattacharyya系数、差分隐私保护、K-medoids聚类、推荐系统

44

TP309.2(计算技术、计算机技术)

国家自然科学基金;教育部人文社会科学研究项目

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

81-88

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

44

2021,44(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn