基于迁移学习的跨域异常流量检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2020-114

基于迁移学习的跨域异常流量检测

引用
基于已知数据的机器学习模型在实际异常流量检测任务中不完全可靠,为此,将不同分布的流量分别作为源域和目标域,建立跨域网络异常流量检测框架,提出了基于联合分布适配的迁移学习方法.通过寻找最优变换矩阵、适配源域与目标域之间的条件概率和边缘概率,实现源域与目标域间的特征迁移,从而解决由于源域与目标域分布差异大所引起的检测准确率下降等问题.实验结果表明,所提方法可以显著提升跨域流量的检测准确率.

异常流量检测、跨域、迁移、联合分布适配、机器学习

44

TP393.08(计算技术、计算机技术)

国家重点研发计划;中央高校基本科研业务费专项;安徽省自然科学基金

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

33-39

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

44

2021,44(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn