通过检测语义分歧识别无答案问题
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2019-202

通过检测语义分歧识别无答案问题

引用
机器阅读理解中存在无法仅从给定文档中获取问题答案的特殊情况,为此,基于语义冲突检测的机器阅读理解网络(SCDNet)提出应通过检测问题与文档内容之间的语义分歧来识别这种情况.经分析发现,文档无法为问题提供答案的根本原因主要分为两类:一是文档中不包含问题所需的语义信息;二是二者包含的语义成分之间存在分歧.据此推断,可以通过检测文档语义信息是否全面涵盖问题所需的信息来识别问题是否可由文档信息给出回答.此外,通过在损失函数中加入答案文本长度惩罚项,网络优化目标函数更接近评测指标,系统性能得到提升.网络模型使用联合训练模型建模无答案的问题识别与答案抽取2个子任务,并使用端到端的方式训练.实验结果证明,其对无答案问题类别预测的正确率超过了性能先进的基线模型SAN2郾0,在SQuAD2郾0数据集上取得了72郾43的F1值和76郾96的无答案问题识别正确率.

机器阅读理解、问答系统、无答案的问题

42

TN929.53

中央高校基本科研业务费专项资金项目500419302

2020-03-25(万方平台首次上网日期,不代表论文的发表时间)

共9页

126-133,141

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

42

2019,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn