改进的凸组合最小均方算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13190/j.jbupt.2016.04.022

改进的凸组合最小均方算法

引用
凸组合最小均方(CLMS)算法能够克服传统最小均方算法收敛速率、跟踪性能和稳态误差之间的矛盾.但传统CLMS算法使用最速下降法推导参数导致其搜索路径呈"之"字形而使收敛速率变慢,为了解决这个问题,采用共轭梯度法实现参数的更新,同时使用双曲正切函数拟合Sigmoid函数来降低算法的运算复杂度.为进一步提高算法性能,在所设计的基础上附加瞬时转移结构实现优化.仿真结果证明,改进算法与传统CLMS、变步长CLMS相比,在噪声、相关信号输入以及非平稳环境下能够保持较好的均方性能和跟踪性能.

自适应滤波、系统识别、最小均方算法、凸组合、共轭梯度法

39

TN911.7

国家自然科学基金项目61001111

2016-11-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

114-117

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

39

2016,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn