基于稠残U-net神经网络在定位CT图像上自动分割甲状腺的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-3208.2022.01.007.

基于稠残U-net神经网络在定位CT图像上自动分割甲状腺的研究

引用
目的 基于深度学习方法提出一种稠残U-net神经网络,探讨其在放疗定位CT上自动预测甲状腺轮廓的可行性,以减少放疗中甲状腺所受辐射剂量,降低甲减发生率.方法 在U-net网络中引入残差机制和稠密连接机制建立一种稠残U-net网络.选取76名患者定位CT图像的甲状腺切片制作数据集,随机划分为训练集58例、验证集9例和测试集9例,对稠残U-net进行训练、验证和测试,得到稠残U-net自动预测甲状腺的结果.通过戴斯相似性系数(Dice)、杰卡德相似系数(Jaccard))和豪斯多夫距离(HD)等评价指标来评估其分割性能.结果 稠残U-net预测甲状腺的Dice值为0.86±0.09、Jaccard值为0.78±0.12、HD值为2.52±0.61,且预测的轮廓边界与专家勾画的标准边界非常接近.结论 本文提出的稠残U-net能在定位CT图像上较为精准地预测甲状腺轮廓,且证明在卷积神经网络中引入残差机制和稠密连接机制能提高其分割性能.

卷积神经网络;残差块;稠密连接;甲状腺;CT图像

41

R318.04(医用一般科学)

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

42-48

相关文献
评论
暂无封面信息
查看本期封面目录

北京生物医学工程

1002-3208

11-2261/R

41

2022,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn