基于生成对抗网络的肝脏CT图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-3208.2021.04.006

基于生成对抗网络的肝脏CT图像分割

引用
目的 从腹部计算机断层扫描(computed tomography,CT)图像中分割出肝脏区域,对于肝脏疾病早期诊断、肝脏大小估计以及3D重建十分重要,精准快速地分割出肝脏边缘成为研究要点.方法 采用公开发表的肝脏肿瘤数据集为研究对象,融合生成对抗网络和Unet网络对CT图像实现肝脏的自动分割.首先将腹部CT图像输入到Unet网络进行分割预测,然后通过生成对抗网络(generative adversarial networks,GAN)进行对抗训练,使得预测结果更加接近于真实结果,同时在进行对抗训练的过程中探索了不同的距离约束函数对于分割结果的影响;预测的分割结果通过Dice分数(dice similarity coefficient,Dice)、IoU分数(intersection over union,IoU)、像素精确度(pixel accuracy,PA)、相对体积误差(relative volume difference,RVD)以及相对表面积误差(relative surface area error,RSSD)在CT-核磁健康腹部器官分割挑战数据集[combined(CT-MR)healthy abdominal organ segmentation challenge data,CHAOS]数据集上进行评价.结果 L2距离约束的Gan-Unet网络可以很好地对肝脏进行分割,其Dice、IoU和PA分别达到了94.9%、91.3%、99.4%,相比于Unet的Dice、IoU和PA为92.3%、86.7%、95.8%有明确的提升.在三维指标中,本文的方法在RVD、RSSD为0.026、0.079,相比于Unet的0.042、0.191有明显下降.结论 通过对Unet网络进行生产对抗训练以及在训练过程中引入距离约束函数可以提高肝脏分割的性能,肝脏分割结果可以应用于计算机辅助诊断系统中.

生成对抗网络;肝脏CT图像分割;全卷积神经网络;深度学习;肝脏3D重建

40

R318.04(医用一般科学)

2021-08-23(万方平台首次上网日期,不代表论文的发表时间)

共10页

367-376

相关文献
评论
暂无封面信息
查看本期封面目录

北京生物医学工程

1002-3208

11-2261/R

40

2021,40(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn