BP神经网络在ATR.FTIR技术微量农药溶液检测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1513.2011.04.016

BP神经网络在ATR.FTIR技术微量农药溶液检测中的应用

引用
利用衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术分别对毒死蜱、炔螨特的微量溶液进行了检测,采用差谱、基线校正和矢量归一化对谱图进行预处理,利用BP神经网络分别使用自适应调整学习率并附加动量因子的梯度下降反向传播算法训练函数和SCG反向传播算法训练函数建立了毒死蜱和炔螨特农药溶液的定量分析模型,并对校正集和预测集进行了定量分析.毒死蜱溶液模型的分析结果为:R=0.9986,RMSEC=0.1000.RMSEP=0.2201;炔螨特溶液模型的分析结果为:R=0.9974,RMSEC=0.3918,RMSEP=0.6241.结果表明,BP神经网络结合ATR-FT.IR技术检测微量农药溶液含量具有快速、精度高、泛化能力强的优点,可用于农药溶液含量的快速、准确鉴定.

BP神经网络、ATR-FTIR、农药残留、毒死蜱、炔螨特

29

TS207.3(食品工业)

北京市自然科学基金项目4073031;北京市优秀人才资助项目20081D0500300130

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

64-67

相关文献
评论
暂无封面信息
查看本期封面目录

北京工商大学学报(自然科学版)

1671-1513

11-4644/N

29

2011,29(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn