10.13332/j.1000--1522.20140221
基于贝叶斯法的长白落叶松林分优势高生长模型研究
贝叶斯统计推断是基于总体信息、样本信息和先验信息的一种统计推断方法,并已成为森林生长模型中的一种重要方法。本文以长白落叶松人工林为对象,基于1687对林分优势高与年龄数据,利用Richards生长方程构建基于贝叶斯法和经典概率统计法的林分优势高生长模型,探讨贝叶斯统计法拟合小样本量数据的稳定性。分别基于全部样本,以及随机抽取的10%、5%和2%样本,利用经典概率统计法(非线性最小二乘法)、无先验信息的贝叶斯统计法和有先验信息的贝叶斯统计法进行参数估计,分析模型表现和参数分布。模型评价指标包括均方根误差( RMSE)、贝叶斯统计常用的DIC统计值以及参数的可信区间。结果表明:基于小样本的贝叶斯统计与大样本的经典概率统计的拟合结果相近,但贝叶斯统计法估计的参数稳定性强,且抽样5%时的RMSE值最小。有先验信息的贝叶斯统计拟合结果优于无先验信息的贝叶斯统计拟合结果,参数分布也较为集中,不确定性小;有先验信息贝叶斯统计和经典概率统计的参数分布区间有较大重叠。另外,有先验信息贝叶斯统计对3种不同样本量的拟合结果显示,参数标准差以及模型RMSE值都是在抽样5%时最小,说明用贝叶斯统计的拟合精度及参数确定性与样本量大小也有一定关系。研究验证了贝叶斯统计在利用先验信息、基于小样本量进行森林生长建模时的优越性。
优势高、Richards生长方程、贝叶斯法、经典统计法、长白落叶松
S758.5(森林经营学、森林计测学、森林经理学)
国家自然科学基金项目31270697。
2015-05-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
94-100