基于随机平滑的恶意软件识别深度学习模型鲁棒性认证方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2022.044

基于随机平滑的恶意软件识别深度学习模型鲁棒性认证方法

引用
面向恶意软件识别的任务中,使用随机平滑算法向所有特征中添加噪声得到的噪声样本可能会失去恶意功能.现有的认证算法按照噪声空间分布的似然比从大到小的顺序构建认证区域,使认证的鲁棒区域小、认证准确率低.本文提出一种基于随机平滑的恶意软件识别深度学习模型的鲁棒性认证方法,方法只向与恶意功能非必需的特征中添加离散伯努利噪声构建可认证的平滑模型,选取似然比更小的区域构建认证区域,实现更准确的鲁棒性认证.实验表明,提出的方法在3个数据集上平均认证半径是对比方法的 4.37倍、2.67倍和2.72倍.该方法可以提供与实际鲁棒边界更紧密的认证半径,在模型鲁棒性评估方面具有较强的实用价值.

鲁棒性认证、随机平滑、恶意软件

43

TP181(自动化基础理论)

工信部信息安全软件项目CEIEC-2020-ZM02-0134

2023-01-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

197-202

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

43

2023,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn