基于深度随机森林的商品类超短文本分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2019.108

基于深度随机森林的商品类超短文本分类研究

引用
近年来,随着移动通信和信息技术的发展,网络上和实际应用场景中需要处理越来越多的长度不超过20字并且不带有辅助标签信息的超短文本数据.超短文本因其固有的词义多义性、文本特征极度稀疏、上下文明显缺失以及明辨语义困难等特点,如何对其进行有效地分类成为文本分类领域亟需解决的新问题.本文针对传统的短文本分类方法KNN和决策树在商品类超短文本上存在的由于特征稀少而导致分类器性能不佳的问题,提出了一种基于深度随机森林的商品类超短文本分类方法.该方法采用"分流"策略,利用外部知识库进行辅助,对知识库中存在明确类别的商品名直接确定其分类,对无法直接抽取类别的商品名,采用Word2vec对其在外部知识库中的描述进行向量化,并利用深度随机森林对向量进行分类,同时不断优化分类器直到训练集大小达到设定的阈值.实验结果表明,与传统的分类方法KNN和决策树相比,本文提出的分类方法在平均准确率上分别提高了22.78%和17.22%,平均召回率上分别提高了22.85%和15.23%.

超短文本分类;商品名称;深度随机森林

41

TP391(计算技术、计算机技术)

国家自然科学基金;教育部-中国移动科研基金;国家重点基础研究发展计划(973计划)

2022-03-21(万方平台首次上网日期,不代表论文的发表时间)

共9页

1277-1285

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn