融合子集特征级联预学习的封装方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2019.117

融合子集特征级联预学习的封装方法研究

引用
机器学习领域中的特征选择算法可简化模型输入,提高可解释性并帮助避免维度灾难及过拟合现象的发生.针对基于封装法进行特征选择时,评价模型通常将搜索出的特征子集直接作为输入,导致算法对特征利用和评估效果受限于评价模型的特征学习能力,限制了对更适特征子集的发现能力等问题,提出一种基于级联森林结构的子集特征预学习封装法.该方法在搜索算法与评价模型之间添加多层级联森林,重构待评价特征子集为高级特征集,降低评价模型模式识别难度,提高对子集性能的评价效果.实验对比了多种搜索算法及评价模型组合,本方法可在保证分类性能的前提下,进一步降低所选特征数量,同时维持了封装法的低耦合性.

特征选择;封装法;级联森林;特征学习

41

TP391(计算技术、计算机技术)

国家"十三五"科技支撑计划项目;国家卫生部卫生行业科研专项基金项目

2021-12-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

1201-1206

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn