基于轻量化网络的眼部特征分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2020.119

基于轻量化网络的眼部特征分割方法

引用
针对高分辨率眼部图像的瞳孔、虹膜特征快速识别与检测问题,提出了一种轻量化语义分割网络DIA-UNet(double input attention UNet).它采用对称双编码结构同步获取眼部灰度图及其轮廓图特征,并通过双注意力机制实现了解码端的特征筛选,将深层融合特征作为语义分割输出.在CASIA-Iris-Interval和高分辨率瞳孔数据集上测试结果表明,与其他轻量化语义分割网络相比,本文提出的DIA-UNet在保证虹膜、瞳孔分割准确率的同时网络参数个数仅有0.076 Million,处理速度高达123.5 FPS.

语义分割;双输入结构;注意力机制;轻量化网络;眼部特征

41

TP391(计算技术、计算机技术)

2021-10-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

970-976

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn