基于恐惧指数的疫情影响下短期电力负荷预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2020.200

基于恐惧指数的疫情影响下短期电力负荷预测方法

引用
突如其来的新型冠状病毒肺炎(COVID-19)疫情给电力负荷造成了严重的影响,为了有效应对疫情带来的影响,提高疫情影响下的短期负荷预测精度,提出了一种基于恐惧指数(FI)的疫情影响下短期电力负荷预测方法.利用疫情数据构建FI,与时间信息、历史负荷、气象条件一起作为广义回归神经网络(GRNN)模型的输入变量,用果蝇优化算法(FOA)对GRNN平滑因子进行优化,提高预测结果的准确度和稳定性,使用构建的预测模型进行预测.算例结果表明,该方法能有效提高疫情影响下短期负荷预测的精度,为重大灾难影响下的短期负荷预测提供参考与借鉴.

COVID-19疫情;短期负荷预测;恐惧指数;广义回归神经网络;果蝇优化算法

41

TM715(输配电工程、电力网及电力系统)

国家自然科学基金资助项目;安徽省科技重大专项

2021-10-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

961-969

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn