基于改进Mask R-CNN的可见光图像中舰船目标检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2020.076

基于改进Mask R-CNN的可见光图像中舰船目标检测方法

引用
针对基于卷积神经网络的目标识别方法中经典的矩形检测框在检测舰船目标时会框出很多无关区域,易出现漏检、误检等问题,提出基于改进Mask R-CNN(mask region-based convolution neural networks)的舰船目标检测方法,在Mask R-CNN网络的基础上通过增加判别模块、类别预测分支和语义分割分支对视觉系统采集的可见光图像中的舰船目标进行目标定位和类别预测,同时获得舰船目标的边缘轮廓并实现对军舰目标的语义分割,为海上无人作战系统提供更精确的信息.实验结果表明,该方法在保持较高检出率和运行效率的同时误检率较低,舰船目标的平均检测精度较高,具有良好的舰船目标检测性能.

舰船目标;目标检测;Mask R-CNN;语义分割

41

TP391.9(计算技术、计算机技术)

国家自然科学基金资助项目61471412,61771020

2021-08-16(万方平台首次上网日期,不代表论文的发表时间)

共11页

734-744

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn