融合序列语法知识的卷积-自注意力生成式摘要方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit 1001-0645.2019.188

融合序列语法知识的卷积-自注意力生成式摘要方法

引用
针对基于编码-解码的生成式摘要模型不能充分提取语法知识导致摘要出现不符合语法规则的问题,循环神经网络易遗忘历史信息且训练时无法并行计算导致处理长文本时生成的摘要主旨不显著以及编码速度慢的问题,提出了一种融合序列语法知识的卷积-自注意力生成式摘要方法.该方法对文本构建短语结构树,将语法知识序列化并嵌入到编码器中,使编码时能充分利用语法信息;使用卷积-自注意力模型替换循环神经网络进行编码,更好学习文本的全局和局部信息.在CNN/Daily Mail语料上进行实验,结果表明提出的方法优于当前先进方法,生成的摘要更符合语法规则、主旨更显著且模型的编码速度更快.

生成式摘要、编码-解码模型、语法分析、卷积-自注意力模型、注意力机制

41

TP391.1(计算技术、计算机技术)

国家"十二五"科技支撑计划项目;北京理工大学基础研究基金项目;国家"二四二"信息安全计划项目

2021-03-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

93-101

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

41

2021,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn