基于转移概率矩阵自学习的犯罪分布预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2018.042

基于转移概率矩阵自学习的犯罪分布预测

引用
针对犯罪分布预测准确率低,历史犯罪数据缺失严重的问题,提出了基于历史犯罪数据,融合所研究地区的社会环境因素的转移概率矩阵自学习的犯罪分布预测算法——TWcS.将包括距离信息、面积信息、人口信息在内的社会环境因素作为权重值引入到梯度下降策略中,利用梯度下降实现 TWcS算法的转移概率矩阵自学习.实验结果证明,TWcS算法的性能明显优于包括当前最优基线算法(TPML-WMA)在内的其他预测算法(如 LR、AR、Lasso回归算法、贝叶斯算法、决策树算法等),TWcS算法的 MAE值是其他算法 MAE平均值的 33 %.

犯罪分布预测、转移概率矩阵、梯度下降法

40

TP399(计算技术、计算机技术)

国家自然科学基金面上项目;中国传媒大学中央高校基本科研业务费专项资金资助

2020-03-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

98-104

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

40

2020,40(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn