基于机器学习的Android应用组件暴露漏洞分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2019.09.015

基于机器学习的Android应用组件暴露漏洞分析

引用
现阶段已有很多Android应用软件的自动化漏洞检测方法,针对现有漏洞检测方案仍然依赖于先验知识并且误报率较高的问题,本文研究了基于机器学习的Android应用软件组件暴露漏洞的分析方法.在对Android应用软件结构进行全方位分析的基础上,结合组件暴露漏洞模型,建立了相应的机器学习系统,并能够对Android漏洞特征进行提取、数据清理和向量化.结合人工分析与验证,建立了1 000个Android APK样本集,并通过训练实现了组件暴露漏洞的自动化识别,达到了90%以上的精确度.

机器学习、组件暴露漏洞、Android应用

39

TP319(计算技术、计算机技术)

国家自然科学基金面上项目61672534

2019-10-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

974-977

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

39

2019,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn