基于多重分形降趋算法与改进的K均值聚类滚动轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2019.05.006

基于多重分形降趋算法与改进的K均值聚类滚动轴承故障诊断

引用
针对滚动轴承振动信号非线性、非平稳的特点,提出采用多重分形降趋算法计算多重分形谱参数作为特征参数,对比分析了多重分形降趋波动分析法及多重分形降趋移动平均法提取轴承故障特征的优劣性.并提出改进的K均值聚类分析对多重分形降趋算法提取的特征参数进行分类,从而实现轴承故障诊断的目的.运用滚动轴承公开数据对方法进行验证,提取时域特征与多重分形谱参数进行对比分析,并对两种多重分形降趋算法的效果进行对比分析,验证了多重分形降趋波动分析法与改进K均值聚类相结合对轴承故障诊断的有效性,为轴承故障诊断方法提供了一种新的尝试.

轴承、多重分形、K均值聚类、故障诊断

39

TJ07(一般性问题)

河北省自然科学基金资助项目E2015506012

2019-07-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

473-479

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

39

2019,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn