基于PCA-NARX的锂离子电池剩余使用寿命预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2019.04.012

基于PCA-NARX的锂离子电池剩余使用寿命预测

引用
目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预测框架,首先提取多个能反映电池性能退化的可测参数,并将PCA去除冗余后的结果作为预测健康因子;然后利用一组电池的全寿命数据构建基于NARX神经网络的健康因子和容量预测模型,对同类型不同电池预测时将该电池寿命前期健康因子作为输入,即可间接预测出其RUL.最后实验结果表明所提框架在同类型不同电池RUL的预测中精度较高且适应性较强.

锂离子电池、剩余使用寿命、相关性分析、PCA算法、NARX神经网络

39

TP206(自动化技术及设备)

山西省重点研发计划资助项目201703D111011;山西省青年自然科学基金资助项目201601D021075;山西省研究生教育改革研究资助项目2018JG62;中北大学自然科学基金资助项目2016032,2017025

2019-06-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

406-412

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

39

2019,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn