基于相似性验证与子块排序的NSST域SAR图像去噪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit 1001-0645.2018.07.014

基于相似性验证与子块排序的NSST域SAR图像去噪

引用
为了改进传统的非局部变换域合成孔径雷达(synthetic aperture radar,SAR)图像去噪算法不考虑子块关系的缺点,结合相似性验证与子块排序提出一种新的非下采样剪切波(non-subsampled shearlet transform,NSST)域SAR图像去噪算法.构造NSST域SAR图像相似块之间距离的密度分布;利用子块之间的相似性,去除相似性较低的子块;结合子块排序和最优一维滤波对SAR图像进行去噪.实验结果表明,与其他经典去噪算法相比,等效视数平均提升6.92,边缘保持指数更接近1,无参考质量评价指数平均降低2.51,能更好地保持图像边缘和纹理信息,改善图像的视觉效果.

SAR图像去噪、非下采样剪切波变换、相似性验证、子块排序

38

TN911.73;TJ01

国家自然科学基金资助项目61401308,61572063;河北省自然科学基金资助项目F2016201142,F2016201187;河北省教育厅项目QN2016085;河北大学研究生创新资助项目X201710,hbu2018ss01

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

744-751

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

38

2018,38(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn