基于ICA变量分组的集成软测量方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit 1001-0645.2018.06.013

基于ICA变量分组的集成软测量方法研究

引用
提出了一种基于独立主成分分析(independent component analysis,ICA)变量分组和集成学习的软测量建模方法.该方法首先运用ICA对输入过程变量进行分组,建立多个变量组子空间.然后在各变量组子空间内提取子样本集,降低变量和变量组之间的耦合性,并基于核偏最小二乘法(KPLS)建立预测子模型.最后,采用贝叶斯方法对子模型的输出进行集成,给出最终预测结果.运用该方法对工业橡胶密炼过程的数据进行了预测,并与其它软测量方法的结果进行比较分析,实验结果表明,本文提出的方法具有更好的预测性能.

软测量、变量分组、核学习、集成建模

38

TP13(自动化基础理论)

山东省自然科学基金资助项目ZR2016FM28

2018-08-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

631-636

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

38

2018,38(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn