10.15918/j.tbit1001-0645.2017.09.016
基于码本映射和GMM的语音带宽扩展
采用传统的高斯混合模型(Gaussian mixture model,GMM)进行语音带宽扩展时,会出现所估计的特征参数过平滑的问题,其主要原因是协方差估计不准确而导致扩展的高频特征细节信息的丢失,因此本文提出了码本映射(codebook mapping,CM)与高斯混合模型相结合的语音带宽扩展算法.提取高、低频特征参数,并训练高斯混合模型,基于高斯混合模型参数训练偏移矢量的码本;在扩展阶段,利用偏移矢量的码本将低频偏移矢量映射为高频偏移矢量,再将高频偏移矢量与高斯混合模型估计部分相加作为估计的高频特征参数.对利用该方法进行带宽扩展后的语音质量进行主观/客观评测.实验结果表明,相比传统的GMM语音带宽方法,CM-GMM合成的高频语音更接近原始高频语音,明显消除了高频过平滑现象.
语音带宽扩展、高斯混合模型、码本映射
37
TN929.53
国际合作研究项目
2017-11-29(万方平台首次上网日期,不代表论文的发表时间)
共5页
970-974