基于稀疏表示和粒子滤波的在线目标跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2016.06.016

基于稀疏表示和粒子滤波的在线目标跟踪算法

引用
针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向量和琐碎模板进行稀疏表示,进而利用L1范数最小化方法进行最优求解.为保证在遮挡的情况下目标跟踪的精度,对目标遮挡部分和非遮挡部分进行拆分建模,并利用PCA子空间增量学习的方式不断更新目标跟踪模型.通过对具有挑战性的跟踪视频进行定性和定量分析,实验证明该方法在跟踪精度上要优于传统的跟踪方法.

稀疏表示、PCA增量学习、PHOG特征、在线目标跟踪

36

TP391(计算技术、计算机技术)

2016-07-20(万方平台首次上网日期,不代表论文的发表时间)

635-640

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

36

2016,36(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn