粒子群优化平方根强跟踪CKF及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15918/j.tbit1001-0645.2015.08.012

粒子群优化平方根强跟踪CKF及应用

引用
提出一种粒子群优化平方根强跟踪容积卡尔曼滤波算法,并将其用于水下应答器辅助航位推算组合导航系统.以强跟踪滤波器为理论框架,结合容积卡尔曼滤波器,设计了平方根强跟踪容积卡尔曼滤波器.提出一种改进的粒子群算法,将粒子两两为一对分成若干对,每进化一次后,比较两个粒子的代价函数值,代价函数值较优的粒子,搜索方向侧重于群体历史经验,代价函数较差的粒子,搜索方向侧重于自身历史经验.将改进的粒子群算法用于求取强跟踪滤波器的渐消因子.仿真结果表明在系统模型不准确的情况下所提算法依然能够有效跟踪状态变化,比传统的容积卡尔曼滤波器具有更高的滤波精度和稳定性.

粒子群、航位推算、水下应答器、强跟踪、容积卡尔曼

35

TP301.6;TP18(计算技术、计算机技术)

国家自然科学基金资助项目51179038,51109043;黑龙江省基金资助项目E201123

2015-10-20(万方平台首次上网日期,不代表论文的发表时间)

828-835

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

35

2015,35(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn