融合GMM及SVM的特定音频事件高精度识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

融合GMM及SVM的特定音频事件高精度识别方法

引用
针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别的结果进行融合处理,以手枪、步枪、机关枪等10类以上枪声为实验数据,无需针对每种枪声生成相应的识别模板,仅需训练生成2个识别模板.实验结果表明,识别准确率达到92.71%.该方法模板数量少,不需要多次训练,算法复杂度较低,不仅便于应用而且可大幅提升识别效率.

音频识别、高斯混合模型(GMM)、支持向量机(SVM)、Mel频率倒谱系数(MFCC)、特定音频事件

34

TP391(计算技术、计算机技术)

国家“二四二”计划项目2005C48;北京理工大学科技创新计划项目2011CX01015

2014-10-15(万方平台首次上网日期,不代表论文的发表时间)

716-722

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

34

2014,34(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn