一种基于小波PCA的高光谱图像特征提取新方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0645.2007.07.014

一种基于小波PCA的高光谱图像特征提取新方法

引用
针对高光谱图像数据量大、数据维数高、光谱信息丰富的特点,提出一种基于小波分解的主成分分析(PCA)降维的特征提取新方法.该方法充分利用小波变换的优势,在光谱域内针对每个像元进行降维,既减少了数据量,还能保留光谱信号的差别;PCA方法充分利用像元间的相关性,保留不同类在相邻像元间的局部空间信息,弥补了空间域内小波变换类间可分性较差的问题.实验结果表明,小波分解与PCA相结合的特征提取方法能够有效地提高高光谱数据分类效率及分类精度.

高光谱、小波分解、主成分分析(PCA)、特征提取、特征降维

27

TP391;O434.19(计算技术、计算机技术)

国家部委科研项目51490020105BQ0101

2007-08-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

621-624

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

27

2007,27(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn