基于一类SVM的贝叶斯分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0645.2006.02.012

基于一类SVM的贝叶斯分类算法

引用
提出一种基于一类支持向量机(one-class SVM)的贝叶斯分类算法,该算法用一类SVM对类条件概率密度进行估计以构造贝叶斯分类器. 证明采用高斯核的一类SVM,其解可以归一化为密度函数,并把该密度函数看作类条件概率密度的平滑估计,构造贝叶斯分类器. 实际数据集上的实验结果表明,提出的分类算法测试准确率高于简单贝叶斯分类器与贝叶斯网络分类器,不低于传统二类SVM;比传统二类SVM需要计算的核矩阵规模更小,训练时间更短.

贝叶斯分类、支持向量机、概率密度估计

26

TP391(计算技术、计算机技术)

国家重点基础研究发展计划973计划G1998030414

2006-04-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

143-146

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

26

2006,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn