基于智能聚类的相关度内容检索方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0645.2005.12.010

基于智能聚类的相关度内容检索方法

引用
为了提高内容检索的相关度与检索效率,基于信息系统理论与自组织神经网络理论,提出基于智能聚类的相关度检索方法,并设计了检索算法.经过训练的自组织神经网络通过对查询需求进行聚类,使得内容的检索只在与查询需求同类的文本内容中进行,提高了检索效率,并通过在同一个向量空间对查询向量与文本内容的语义向量进行相似度衡量,为用户选择更相关的内容提供依据.设计开发了基于智能聚类的内容检索试验平台,验证了该方法的有效性.

聚类分析、相似度、语义向量、内容检索、内容管理

25

TP391;TP183(计算技术、计算机技术)

国家科技攻关项目2003AA1Z2320

2006-02-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

1075-1078

相关文献
评论
暂无封面信息
查看本期封面目录

北京理工大学学报

1001-0645

11-2596/T

25

2005,25(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn