基于唾液炎症因子水平预测牙周状况的机器学习模型的建立
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于唾液炎症因子水平预测牙周状况的机器学习模型的建立

引用
目的 建立基于唾液炎症因子水平的牙龈炎、牙周炎诊断机器学习模型.方法 Luminex液相芯片检测牙周健康对照组(41人)、牙龈炎患者组(60人)和牙周炎患者组(54人)唾液中22种炎症因子水平,Spearman分析选择P<0.05的炎症因子建立六种机器学习模型,比较它们在区分牙周健康者、牙龈炎患者和牙周炎患者中的诊断性能.结果 支持向量机(SVM)、PSO改良支持向量机(PSO-SVM)、GA改良支持向量机(GA-SVM)模型准确率为100%;深度学习(BP)和GA改良深度学习(GA-BP)模型准确率为87.10%,Fisher分类判别模型(LDA)准确率为83.87%.结论 SVM模型准确率和运行时间最佳,可判断牙周健康状况,机器学习模型可能成为牙龈炎和牙周炎诊断新方法.

牙龈炎、牙周炎、机器学习、唾液、炎症因子

30

R781.42(口腔科学)

国家重点研发计划2016YFC1102704

2022-09-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

248-254

相关文献
评论
暂无封面信息
查看本期封面目录

北京口腔医学

1006-673X

11-3639/R

30

2022,30(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn