基于梯度压缩的YOLO v4算法车型识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于梯度压缩的YOLO v4算法车型识别

引用
为进一步提高智能交通系统对车辆及不同车型识别的泛化性、鲁棒性与实时性.根据检测区域的特征有针对性地构建数据集,改变余弦退火衰减(CD)学习率的更新方式,提出一种基于梯度压缩(GC)的Adam优化算法(Adam?GC)来提高YOLO v4算法的训练速度、检测精度以及网络模型的泛化能力.为验证改进后YOLO v4算法的有效性,对实际路况的车流进行采集后,利用训练完成的网络模型对不同密度车流进行定量的车型检测实验验证.经实验验证,改进后方法的整体检测结果要优于改进前,YOLO v4和YOLO v4 GC CD训练得到的网络模型在阻塞流样本下检测得到的准确率分别为94.59%和96.46%;在同步流样本下检测得到的准确率分别为95.34%和97.20%;在自由流样本下检测得到的准确率分别为95.98%和97.88%.

梯度压缩、学习率、Adam优化算法、YOLO v4、车型识别

44

TP391.4(计算技术、计算机技术)

青岛市民生科技计划资助项目;山东省重点研发计划资助项目

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共11页

940-950

相关文献
评论
暂无封面信息
查看本期封面目录

工程科学学报

2095-9389

10-1297/TF

44

2022,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn