基于改进YOLOv5s的安全帽检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2021.0595

基于改进YOLOv5s的安全帽检测算法

引用
针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法.采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加关注小目标信息的通道特征,以提升对小目标的检测性能;对数据增强方式进行改进,丰富小尺度样本数据集;增加一个检测层以便能更好地学习密集目标的多级特征,从而提高模型应对复杂密集场景的能力.此外,构建一个面向密集目标及远距离小目标的安全帽检测数据集.实验结果表明:所提改进算法比原始YOLOv5s算法平均精确率(mAP@0.5)提升 6.57%,比最新的YOLOX-L及PP-YOLOv2算法平均精确率分别提升1.05%与1.21%,在密集场景及小目标场景下具有较强的泛化能力.

安全帽检测、YOLOv5s算法、数据增强、DenseBlock模块、SE-Net注意力模块

49

TP391.41;TP183(计算技术、计算机技术)

2023-09-05(万方平台首次上网日期,不代表论文的发表时间)

共12页

2050-2061

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

49

2023,49(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn