基于Logistic回归麻雀算法的图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2021.0268

基于Logistic回归麻雀算法的图像分割

引用
针对麻雀搜索算法后期种群多样性减少、易陷入局部最优解等问题,提出一种新的改进麻雀搜索算法.所提算法先引入小孔成像反向学习策略对发现者的位置进行更新,提升寻优位置的多样性;其次受Logistic模型的启发,提出一种新的自适应因子对安全阈值进行动态控制,平衡所提算法的全局搜索与局部开发的能力.通过与其他算法在6个基准函数上进行仿真对比,结果表明:所提算法的收敛精度与速度均优于其他算法.在工程应用上,用所提算法优化K-means聚类算法进行图像分割,峰值信噪比(PSNR)、结构相似性(SSIM)及特征相似性(FSIM)3种度量指标验证了其良好的分割性能.

麻雀搜索算法、图像分割、小孔成像反向学习、Logistic模型、K-means聚类算法

49

TP391.41(计算技术、计算机技术)

2023-04-11(万方平台首次上网日期,不代表论文的发表时间)

共11页

636-646

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

49

2023,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn