基于学习行为的MOOC用户持续学习预测框架
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2021.0188

基于学习行为的MOOC用户持续学习预测框架

引用
大型开放式网络课程(MOOC)的出现虽然极大地改变了人们的学习方式,但用户在MOOC平台开展学习的学习情况及完成率预测仍是目前一个重要的技术挑战.针对预测的需求,从用户的学习行为中对用户和课程进行分析,采用长短时记忆机对学习者的学习活动进行建模,采用多头注意力机制对用户和课程之间的交互活动情况进行分析,提出一个基于门控单元的特征融合框架,用于学习情况预测.在公开数据集上的结果表明:所提框架能够提升预测精度,使得MOOC平台能够尽可能早地对用户活动进行干预,从而提升整体的MOOC平台使用体验.

大型开放式网络课程、预测框架、用户、课程内容、学习行为

49

TP399;G434(计算技术、计算机技术)

国家自然科学基金61977003

2023-02-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

74-82

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

49

2023,49(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn