基于特征融合与抗遮挡的卫星视频目标跟踪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2021.0150

基于特征融合与抗遮挡的卫星视频目标跟踪方法

引用
卫星视频中的目标易受到遮挡和复杂环境干扰等影响,造成对目标的运动状态估计不够准确,导致目标跟踪失败.基于此,在核相关滤波(KCF)算法的基础上设计2种算法提高目标跟踪的成功率,实现鲁棒性的目标跟踪.通过提取目标的方向梯度直方图(HOG)特征、灰度特征和高斯曲率特征表述目标的外观模型;联合响应图的峰值和平均峰值相关能量(APCE)对目标的响应图进行自适应加权融合,并将融合后的响应图峰值作为置信度对目标的模型进行自适应更新;通过使用卡尔曼滤波的方法对遮挡的目标进行位置预测,当目标遮挡结束时,对目标进行重新跟踪,解决卫星视频中目标被遮挡的问题.大量实验结果表明:所改进的相关滤波算法对卫星视频中的目标跟踪,尤其是在复杂环境、目标被遮挡及场景光照发生变化的情况下,具有良好的效果,并且在目标跟踪的精度和成功率等方面都有很大的提高,为进一步对卫星视频中的目标跟踪奠定了基础.

卫星视频、相关滤波、自适应特征融合和模型更新、卡尔曼滤波、目标跟踪

48

TP391.41;TN911.73;TP242.62

国家自然科学基金61805283

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共11页

2537-2547

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

48

2022,48(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn