10.13700/j.bh.1001-5965.2021.0150
基于特征融合与抗遮挡的卫星视频目标跟踪方法
卫星视频中的目标易受到遮挡和复杂环境干扰等影响,造成对目标的运动状态估计不够准确,导致目标跟踪失败.基于此,在核相关滤波(KCF)算法的基础上设计2种算法提高目标跟踪的成功率,实现鲁棒性的目标跟踪.通过提取目标的方向梯度直方图(HOG)特征、灰度特征和高斯曲率特征表述目标的外观模型;联合响应图的峰值和平均峰值相关能量(APCE)对目标的响应图进行自适应加权融合,并将融合后的响应图峰值作为置信度对目标的模型进行自适应更新;通过使用卡尔曼滤波的方法对遮挡的目标进行位置预测,当目标遮挡结束时,对目标进行重新跟踪,解决卫星视频中目标被遮挡的问题.大量实验结果表明:所改进的相关滤波算法对卫星视频中的目标跟踪,尤其是在复杂环境、目标被遮挡及场景光照发生变化的情况下,具有良好的效果,并且在目标跟踪的精度和成功率等方面都有很大的提高,为进一步对卫星视频中的目标跟踪奠定了基础.
卫星视频、相关滤波、自适应特征融合和模型更新、卡尔曼滤波、目标跟踪
48
TP391.41;TN911.73;TP242.62
国家自然科学基金61805283
2023-01-05(万方平台首次上网日期,不代表论文的发表时间)
共11页
2537-2547