基于图卷积网络的卷积神经网络耗时预测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2021.0149

基于图卷积网络的卷积神经网络耗时预测算法

引用
通过可学习的预测算法获取卷积神经网络(CNN)在硬件上的推理耗时越来越受到研究者的关注.现有耗时预测算法主要面临2个问题:卷积神经网络设计空间采样复杂度高,数据采集成本高;无法准确预测硬件编译器的算子融合技术对推理耗时的影响.为了解决上述问题,提出了一种基于图卷积网络(GCN)的耗时预测算法,将整体网络耗时看作多节点耗时补偿的累加,并利用图卷积对结构算子融合产生的耗时影响进行建模.同时,提出一种新型差分训练方案,减少采样空间规模,提高算法的泛化能力.在HISI3559硬件平台上对MB-C连续空间采样模型的耗时预测实验表明:所提算法可将耗时估计的平均相对误差从传统算法的302%降低到5.3%.另外,通过将传统耗时预测算法替换成所提算法进行耗时评估,可以使网络结构搜索算法搜索到耗时更加接近目标的高精度网络.

耗时预测、图卷积网络、深度学习、网络结构搜索、模型部署

48

TP391.4;V247.1(计算技术、计算机技术)

国家重点研发计划2018YFC0807706

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共10页

2450-2459

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

48

2022,48(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn